Physicists used LIGO’s mirrors to approach a quantum limit

0
Loading...

Quantum mechanics usually applies to very small objects: atoms, electrons and the like. But physicists have now brought the equivalent of a 10-kilogram object to the edge of the quantum realm.

Scientists with the Advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, reduced vibrations in a combination of the facility’s mirrors to nearly the lowest level allowed by quantum mechanics, they report in the June 18 Science.

The researchers quelled differences between the jiggling of LIGO’s four 40-kilogram mirrors, putting them in near-perfect sync. When the mirrors are combined in this way, they behave effectively like a single, 10-kilogram object.

Loading...

LIGO is designed to measure gravitational waves, using laser light that bounces between sets of mirrors in the detector’s two long arms (SN: 2/11/16). But physicist Vivishek Sudhir of MIT and colleagues instead used the laser light to monitor the mirrors’ movements to extreme precision and apply electric fields to resist the motion. “It’s almost like a noise-canceling headphone,” says Sudhir. But instead of measuring nearby sounds and canceling out that noise, the technique cancels out motion.

The researchers reduced the mirrors’ relative motions to about 10.8 phonons, or quantum units of vibration, close to the zero-phonon quantum limit.

The study’s purpose is not to better understand gravitational waves, but to get closer to revealing secrets of quantum mechanics. Scientists are still trying to understand why large objects don’t typically follow the laws of quantum mechanics. Such objects lose their quantum properties, or decohere. Studying quantum states of more massive objects could help scientists pin down how decoherence happens.

Loading...

Previous studies have observed much smaller objects in quantum states. In 2020, physicist Markus Aspelmeyer of the University of Vienna and colleagues brought vibrations of a nanoparticle to the quantum limit (SN: 1/30/20). LIGO’s mirrors are “a fantastic system to study decoherence effects on super-massive objects in the quantum regime,” says Aspelmeyer.

Stay connected with us on social media platform for instant update click here to join our  Twitter, & Facebook

Loading...

We are now on Telegram. Click here to join our channel (@TechiUpdate) and stay updated with the latest Technology headlines.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Loading...

Read original article here

Denial of responsibility! TechAzi is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More